EBLOCBROKER: AN AUTONOMOUS BLOCKCHAIN-BASED

COMPUTATIONAL BROKER FOR E-SCIENCE
Ph.D. Thesis Defense

Alper Alimoglu

Advisor: Prof. Can Ozturan

Defense Committee:
Prof. Cem Ersoy
Prof. Arda Yurdakul
Prof. D. Turgay Altilar
Prof. Oznur Ozkasap

Department of Computer Engineering
September 29, 2025

Table of Contents

Motivation

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 2/ 57

Motivation

aws) |

Centralized resource allocation — Decentralized resource allocation
Decentralized Autonomous Organization (DAO)

Provide an ecosystem where providers can sell their idle computing power to others and earn
additional income.

» Supporting Slurm-managed clusters since the academicians and researchers commonly use Slurm.

Computation + Data

Problem
How can we facilitate an efficient way to share and allocate computational and data

resources within research communities?
Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 3/ 57

Motivation

C =
Provider A
2 -
=
DAO oot (———
Provider B

eBlocBroker

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 4/ 57

Motivation

Computation

DAO
eBlocBroker

Alper Alimoglu

dataset

doataset

Provider_2

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

4/ 57

Motivation

Computation

DAO
eBlocBroker

Data

Alper Alimoglu

dataset

doataset

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

4/ 57

Motivation

Computation

DAO
eBlocBroker

Data

Alper Alimoglu

dataset

Cost datoset

Provider_2

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

4/ 57

Major Components of the Thesis

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 5/ 57

Major Components of the Thesis

EBlocBroker: An Autonomous
Blockchain-base Computa-
tional Broker For e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 5/ 57

Major Components of the Thesis

EBlocBroker: An Autonomous
Blockchain-base Computa-
tional Broker For e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 5/ 57

Major Components of the Thesis

EBlocBroker: An Autonomous
Blockchain-base Computa-
tional Broker For e-Science

An Autonomous Blockchain-
Based Workflow Execu-
tion Broker for e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 5/ 57

Major Components of the Thesis

EBlocBroker: An Autonomous
Blockchain-base Computa-
tional Broker For e-Science

An Autonomous Blockchain-
Based Workflow Execu-
tion Broker for e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 5/ 57

Major Components of the Thesis

EBlocBroker: An Autonomous
Blockchain-base Computa-

tional Broker For e-Science)

An Autonomous Blockchain-
Based Workflow Execu-
tion Broker for e-Science

Design of a Smart Con-

tract Based Autonomous

Organization for Sustain-
able Software and e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 5/ 57

Major Components of the Thesis

EBlocBroker: An Autonomous
Blockchain-base Computa-

tional Broker For e-Science)

An Autonomous Blockchain-
Based Workflow Execu-
tion Broker for e-Science

Design of a Smart Con-

tract Based Autonomous

Organization for Sustain-
able Software and e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 5/ 57

Contributions of the Thesis [1 | " Bckehambase Compata.

EBlocBroker: An Autonomous |
/'L tional Broker For e-Science

» We propose and implement eBlocBroker infrastructure, which is an autonomous blockchain-
based broker for sharing computing power and data in e-Science.

> The eBlocBroker smart contract, acting as a broker, aims to connect users (requesters), providers,
and cloud storage services within a decentralized ecosystem, utilizing blockchain's capabilities to
enhance transparency, security, and efficiency in resource allocation.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 6/ 57

) Blockchain-base Computa-
/| tional Broker For e-Science

. . . [EBlocBroker: An Au us |
Contributions of the Thesis [1 | sickhsinbase compita. ‘

» We propose and implement eBlocBroker infrastructure, which is an autonomous blockchain-
based broker for sharing computing power and data in e-Science.

> The eBlocBroker smart contract, acting as a broker, aims to connect users (requesters), providers,
and cloud storage services within a decentralized ecosystem, utilizing blockchain's capabilities to
enhance transparency, security, and efficiency in resource allocation.

» Data staging solutions for data stored on centralized cloud storage facility (B2DROP, Google
Drive), and decentralized storage (distributed IPFS file system).

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 6/ 57

. . . % [EBlocBroker: An Au us |
Contributions of the Thesis | 1 | “Bochnbse Compta

) Blockchain-base Computa-
/| tional Broker For e-Science

» We propose and implement eBlocBroker infrastructure, which is an autonomous blockchain-
based broker for sharing computing power and data in e-Science.

> The eBlocBroker smart contract, acting as a broker, aims to connect users (requesters), providers,
and cloud storage services within a decentralized ecosystem, utilizing blockchain's capabilities to
enhance transparency, security, and efficiency in resource allocation.

» Data staging solutions for data stored on centralized cloud storage facility (B2DROP, Google
Drive), and decentralized storage (distributed IPFS file system).

» Implementation of a cost model in the eBlocBroker smart contract, which calculates and records
computation, data transfer, storage, and cache usage costs.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 6/ 57

. . . 4 | EBlocBroker: An Au u
Contributions of the Thesis [1 | Bickchsinbsse Computan

//"\ tional Broker For e-Science

» We propose and implement eBlocBroker infrastructure, which is an autonomous blockchain-
based broker for sharing computing power and data in e-Science.

> The eBlocBroker smart contract, acting as a broker, aims to connect users (requesters), providers,
and cloud storage services within a decentralized ecosystem, utilizing blockchain's capabilities to
enhance transparency, security, and efficiency in resource allocation.

» Data staging solutions for data stored on centralized cloud storage facility (B2DROP, Google
Drive), and decentralized storage (distributed IPFS file system).

» Implementation of a cost model in the eBlocBroker smart contract, which calculates and records
computation, data transfer, storage, and cache usage costs.

» An ERC20 token standard-based payment system for purchasing computing and data resources.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 6/ 57

An Autonomous Blockchain-
Based Workflow Execu-
tion Broker for e-Science

Contributions of the Thesis

» Implementation of a new feature on top of the eBlocBroker infrastructure to offer scientific
workflow submission, execution, and data resource services to research communities.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 7/ 57

Contributions of the Thesis (

Based Workflow Execu-

/ w An Autonomous Blockchain-
2
/ tion Broker for e-Science

» Implementation of a new feature on top of the eBlocBroker infrastructure to offer scientific
workflow submission, execution, and data resource services to research communities.

» Development of a workflow engine on top of the eBlocBroker infrastructure that will be
responsible for executing workflows on distributed providers through blockchain.

> Partition workflows
» Schedule workflows for providers
» Enable parallel processing

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 7/ 57

\‘ An Autonomous Blockchain-

Contributions of the Thesis [2 | " Based Workfiow Execu-
. /‘ tion Broker for e-Science

» Implementation of a new feature on top of the eBlocBroker infrastructure to offer scientific
workflow submission, execution, and data resource services to research communities.

» Development of a workflow engine on top of the eBlocBroker infrastructure that will be
responsible for executing workflows on distributed providers through blockchain.

> Partition workflows
» Schedule workflows for providers
» Enable parallel processing

» The smart contract’'s cost model has been adjusted to accommodate the computation and data
costs of a workflow, supporting the engine's functioning.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 7/ 57

Design of a Smart Con-

. . . tract Based Autonomous e oA
Contributions of the Thesis Organization for Sustain- ‘%\0

able Software and e-Science

» Design and implement a smart contract called AutonomousSoftwareOrg, which is a DAO-based
smart contract. Purpose for e-Science:

P Facilitate open-source software development
» Ensure sustainability and reproducibility of software

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 8/ 57

ya " \ Design of a Smart Con-
Contributions of the Thesis | 3 | act Based Autonomous ‘@‘8

\ Organization for Sustain- =tG
u able Software and e-Science a
» Design and implement a smart contract called AutonomousSoftwareOrg, which is a DAO-based
smart contract. Purpose for e-Science:

P Facilitate open-source software development
» Ensure sustainability and reproducibility of software

» Each software execution trace is recorded on the blockchain, showcasing the connection between
input and output data files for each execution

» The hash of the generated outputs from software can be recorded to facilitate reproducibility
checks for organizations

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 8/ 57

- x\/ Design of a Smart Con-

. - : () tract Based Autonomous o
Contributions of the Thesis \\3/ i badatisad %‘o

able Software and e-Science

» Design and implement a smart contract called AutonomousSoftwareOrg, which is a DAO-based
smart contract. Purpose for e-Science:

P Facilitate open-source software development
» Ensure sustainability and reproducibility of software

» Each software execution trace is recorded on the blockchain, showcasing the connection between
input and output data files for each execution

» The hash of the generated outputs from software can be recorded to facilitate reproducibility
checks for organizations

» A blockchain-based software execution tracing system is implemented as part of an autonomous
software organization to meet the need for software reproducibility

»> An AND/OR graph-based model for software executions and input/output data files has been
developed

» Various software tools, such as PageRank, DAGify, KnockedDown, and SWExecMinlnput, were
developed to analyze software executions

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 8/ 57

Table of Contents

1: EBlocBroker: An Autonomous Blockchain-base Computational Broker For e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 9/ 57

Introduction

Components of the eBlocBroker architecture and their high-level relations with one another.

transfers IPFS objects

IPFS Node
Computational Nodes

Requester sub-
mits jobs, gets jobs’
info., makes pay-

The brokerd listens to
submitted jobs’ events,

contract receives payment, ... Slurm Workload Manager
A Fode ment - glelloe brokerd Daemon Process
Helper Scripts (& Broker 7
Requester Bloxberg Provider

- Uploads data files
- Downloads changes made to
the requester’s completed jobs

- Downloads requester’s data files
- Uploads the changes made to the

Cloud Storage requester’s completed jobs

(B2DROP or
Google Drive)

Virtual Organi-
zation Specific
Application
Software

Researcher

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

10/ 57

Related Work

Table: Similarities and differences between Ethereum blockchain-based decentralized cloud computing
services and our work.

- Run Cloud storage used git-diff o e GPU Data Multi- Work-
Study Billing model . support for dataset flow
environment for data transfer " support support market
output files access support
Golem Pay-per-use Docker container gftp, Docker Hub X X v X v X
iExec Pay-per-task Docker container IPFS, Docker Hub X X v v v X
SONM Pay-per-use Docker container BFTS, CI_IE?) Docker X X v X v X
Ethernity = Pay-per-use Docker container IPFS, Docker Hub X X X X v X
Fluence Pay-per-use Native OS IPFS X X X X v X
Our work Pay-per-use Native OS B2DROP, IPFS, v v X X 4 v

Google Drive

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 11/ 57

Example: Deployment of a Job with Multiple Datasets

Transferring source code and datasets from users to providers through remote cloud storage and IPFS.

Cloud Storage IPFS

 \

S @ 58
'

ry 4 +
A -

. ' '

. ' '
' ! dataset

Local dataset dataset

code

» Compression Requirement: Requesters
should compress the source code of the job

and data files.

» Slurm script:
#!/bin/bash

BASE="../data_link/"

> Reproducible Tarballs: DATA1_DIR=$BASE"47b0£5f1a882d1c15661bc681de8230a"
) DATA2_DIR=$BASE"45281dfec4618e5d20570812dea3s8760"
» Use sort order during the tar process. DATA3_DIR=$BASE" QmZYUCRTp31KustdQP1oWKHpkCDzinli4 j 2VdATxXSNEVZy "
» Do not preserve the timestamp and .git g+ main.cpp o main
folder in the compressed file using gz|p ./main $DATA1_DIR/data.csv $DATA2_DIR/data.csv $DATA3_DIR/data.csv
cat $DATA1_DIR/datal.txt >> completed.txt
. . . cat $DATA2_DIR/data2.txt >> completed.txt
» Hashing: Use the MD5 hashing algorithm.
12/ 57

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

Example: Deployment of a Job with Multiple Datasets

provider: "0x29e613b..."
source__code:
cache_type: private
size_mb: 100
storage_id: b2drop
path: ~/code/code
data:
datal:
cache_type: public
path: 7 /code/datal
size_mb: 100
storage_id: b2drop
data2:
cache_type: public
path: ~/code/data2
size_mb: 1000
storage_id: b2drop
data3:
hash: "ddOfbcc..."
data_ transfer_out: 5
job:
cores: 1
run_ time: 60

Olory

set

sourceCodeHash | cloudStorageID
:

e} —

cacheType dataTransferln
prog hash |0 b2drop private |0 100 |0
datad hash |X b2drop |1 public |1 100 (1
data2 hash |2 b2drop (2 public |2 1000 |2
data3 hash [> none |3 none (3 none (3

job.yaml

fetch hash{-->- eBloc

(

J

contract

Broker
Bloxberg

|
@*
@Ilt t

submitJob()

Figure: Creating a new job and sending it to the provider via eBlocBroker. The dashed arrows represent from

which the data was fetched.

Alper Alimoglu

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

13/ 57

Example for Processing a Job on the Provider

$brokerd @ setJobStateRunning()|<— broker-start
&

corétlract job script f«——
: eBloc
@ listen LogJob() Broker | processPayment() |<— broker-process —

events and

prepare job Bloxberg

Storage
l ******************** /home/user/ directory

|
prog hash —;—®>M— @ job_folder @

|

| 1o, it-diff
datat hash - aownioad 2 pros ——— o siai]

L@ ® Eslurm.sh
data2 hash —‘—>M—

data_link

upload |«— @ @El

L—>|node

[roce]

data3 hash & data git-diff | —
sourceCodeHash verify —— 5 data2 @ — \J%L
cache —> C L") partition

S data3

Figure: A breakdown of the steps the provider takes to receive a job, download the job’s corresponding data,
submit the job to Slurm, upload generated results to the cloud storage, and obtain the payments is outlined.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 14/ 57

Provider's Price Commitment

(b)

Alper Alimoglu

% ﬁBob % ﬁBob % ﬁAlice % ﬁAlice
—

! \
g?og\'/sizgr update provider's prices

submit
job j1

submit job jo

!

50 100 150 200 250 300 350 400 450 500 550 block
1 1

| numbers

v V"
commitment duration #1 commitment duration #2
T
o[50 }——{ £ [30[150]]
1) 350 4 [20100] ...

available core commitment
core price duration

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

15/ 57

The eBlocBroker Smart Contract Implementation

pragma solidity ~0.7.6;

contract eBlocBroker is ERC20 {

function registerRequester (bytes32 gpgFingerprint, string memory gmail, string memory fcID, string memory ipfsAddress) public
returns (bool);

function registerProvider (bytes32 gpgFingerprint, string memory gmail, string memory fcID, string memory ipfsAddress, uint32
availableCore,uint32[] memory prices,uint32 commitmentBlockDur) public returns (bool);

function updateProviderInfo (bytes32 gpgFingerprint, string memory gmail, string memory fcID, string memory ipfsAddress) public
returns (bool);

function suspendProvider () public returns (bool);

function resumeProvider () public returns (bool);

function submitJob (string memory key, uint32[] memory dataTransferIn, Lib.JobArgument memory args, uint32[] memory
storageDuration,bytes32[] memory sourceCodeHash) public;

function setJobStateRunning (string memory key, uint32 index, uint32 startTimestamp) public returns (bool);

function setDataVerified (bytes32[] memory sourceCodeHash) public returns (bool);

function registerData (bytes32 sourceCodeHash, uint32 price, uint32 commitmentBlockDur) public;

function removeRegisteredData (bytes32 sourceCodeHash) public;

dataTransferIn, uint32 dataTransferOut) public;
function depositStorage (address dataOwner, bytes32 sourceCodeHash) public returns (bool);
function refund (address provider, string memory key, uint32 index) public returns (bool);
function authenticateOrcID (address user, bytes32 orcid) public returns (bool);
// Event definitions and getter functions

function processPayment (string memory key, uint32 index, uint32 elapsedTime, bytes32 resultIpfsHash, uint32 endTimestamp, uint32

Figure: Signatures of the eBlocBroker smart contract’s fundamental functions.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

16/ 57

Gas Consumption Limitation

The deployment of transaction executions is bounded by the block gas limit [1]. The gas
limit differs from blockchain to blockchain.

In order to reduce gas costs, we have designed the eBlocBroker smart contract by applying
the following approaches:

P> Because events are not required on-chain, they are used to store most data; hence using them is
considerably cheaper than contract storage.

» For complex functions, internal functions are implemented.

Copy data from storage to memory, apply all modifications to the memory variable, and finally
update the storage with the changes.

» |In certain data structure definitions, use mapping over arrays.

» Using the tight variable packing pattern that optimizes gas consumption when storing or loading
statically-sized variables.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 17/ 57

Cost Model

The total cost includes computation, data transfer, storage, and

caching costs.

Symbol Meaning
P Set of providers: P = {pl,p2,...,p‘P|}
R Set of requesters: R = {rl,rQ,...,r‘R‘}
J Set of jobs: J:{jl,jg,...,ju‘}
D; Set of data files on which workflow W; uses during
its execution: Dj = {d1,d2.,...,d‘DW"}
F;p“ Price per core-minute of the providler P
Fcxche Price per cache-megabyte of the provider p
F;“’"e Price per storage-hour of the provider p
[Flrans Price per transfer-megabyte of the provider p
Fs;ﬁ}“ Set of prices to use data files indexed by data d of
the provider p
lj Number of CPU cores requested to run the job j
X Expected total CPU time in minutes to run the job
J
Zy Expected size in MB to download data d
6Dj Size of the output files as patches in MB generated

by the job j on each D; required to be uploaded

My (ajr, hg) Hours remaining to store with hg on provider p

AW N

16:
17:

oo NG

: cost « I+ X;- F™"
. cost ¢ cost+ 0. - Fga‘“
J
: for each data in data set (d € D;) do

if data d is paid for and stored on provider p
then
continue
end if
if data d is registered on provider p then
cost < cost + Fgf‘éa
else
if data d is requested to be stored on
provider p then
cost < cost + Zy - F;“”e
else
cost < cost+ Z - F;”Che
end if
cost + cost 4 Z4 - Fy™
end if
end for

Alper Alimoglu

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

18/ 57

Cost Model

The total cost includes computation, data transfer, storage, and caching costs.

R(naa7h7y7z7u):

< 2 FI™ 47y Fyomee 4 7. pouche [, — 0]]> [Mp(a,h)=0] if u's false

N—— ~~
transfer cost storage cost cache cost
[C] (D] E
data H
Fph otherwise.

dataseFt cost

(1)

cpu trans
C(n7ajr7HDj7YDj7ZDj7UDj76Dj7lj7)<j7Dj>:Ij . X/ . FpP + 6Dj . Fp + Z R(n, ajr, hd,yd,zd7 Ud) (2)
—_——— .

Alper Alimoglu

- de E)J
computation [C]
cost
[A]

data cost
B

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 19/ 57

Data Structure used in eBlocBroker Smart Contract

provider provider . job - job
address record jobs key 1n<_iex record
_ (J) (h;) ())
P (ap) (l") ‘ J ‘ J‘
A, , Fepu [oache thote I
1 ap ap Py T pr 0 Ty ’ h h 1 J1r g0 TIv
! ! Fgansv 3;71,}17,1'7 ! = g1y Qjas -+
h b e
2 Gpy Qpy AtPQ’ chsua chsc * hl hl 1 tjl’ t;w I,
Foi™ Tpo by i - J1s Qjrs -+
b e
ho hy | 2 | Lo e L
gas Qjas +--
A [epu proache bt I;
N| ap PNy TpN o TPN T h 1 Jgs2 Yjsr Jss
N N Ens . o iy o / 2 Jss Qs -or

Figure: The data structure for storing provider records p on each provider's storage array, which
includes job records. Nodes that are lookup values are colored gray.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 20/ 57

Tests and Results
Before testing in real environments, the eBlocBroker smart contract was developed and
tested using Brownie. Afterward, we deployed eBlocBroker smart contract on Bloxberg and
tested it using two types of synthetic CPU workloads explained as follows:

» Workload-1 tests to submit a job that only requires the source code of the job. It uses the NAS
Parallel Benchmarks [2].

» Workload-2 evaluates executing source code with pre-cached and non-cached datasets on
providers, selecting the cheapest provider.

> As the source code, the parallel network flow application [3] is used, which runs with additional

datasets.
P All three providers have the same 12 medium-size datasets, of which only four distinct ones from

each other have lower prices.
During each job submission using this workload, its script is generated as follows:

P> Three processes run consecutively with different randomly selected datasets.
> Selected three datasets are decided as follows: two datasets are the provider's registered data, and
one is from the requester’s local storage.

In our test, all providers have the same fixed prices for all except the fee for the datasets.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 21/ 57

Tests and Results
The script program we utilize to submit jobs from the requester node executes the following
tasks:

» One hundred synthetic requesters within the requester node continually submit one of the
workloads randomly for 22 hours.

» Job submissions are made in a batch; on each batch, two jobs are submitted to each provider.
Between batches, the script sleeps for an interval randomly chosen between 4 to 8 minutes.

» All source codes contain a Slurm script that is used to execute it.

» Each source code and data file are compressed separately before being uploaded into the cloud
storage.

» Cloud storage service is randomly selected for each job submission, which will be shared between
the requester and the provider.

» Our cost model calculates the job's cost for each provider and selects the provider with the
lowest price.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 22/ 57

Tests and Results

30

20

15

10

[&]

Average Waiting Time (s)

Figure: Comparison of job waiting times (in

| |:| [l B2DROP

25 |-

D [ipFs

D [l GDbRIVE

Workload 1

Workload 2

seconds) for our workloads.

Alper Alimoglu

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

2.75

225

1.75

15

1.25

Average Gas Used (gas)

Figure: Comparison of gas cost for submitJob

-10°

25 -

|:| [submitJob

D D processPayment

[

Workload 1

and processPayment.

Workload 2

23/ 57

Tests and Results

=
o

Average Job Runtime (min)

Figure: Comparison of job run times (in minutes)

‘ [l 0 workioad 1 [] [Workioad 2 L

Provider A

118

I
Provider B Provider C

for our workloads in Slurm.

Alper Alimoglu

12 [
11 ,‘DDWorkload IDDWorkloadZ }]
10]
9 |-
s -
7
6 |-
5 |-
i
I I ﬁ

I
Provider A Provider B Provider C

Average Job Completion time (min)

Figure: Comparison of job completion times (in

minutes) for our workloads in Slurm.

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

24/ 57

Tests and Results

» Tested the robustness of our smart contract, Python scripts, and brokerd.

» Results showed successful task completion by providers, except for some failures in downloading
large files or packages and occasional unresponsive Bloxberg nodes.

» Job owners receive refunds for these unfinished jobs and can rerun them since their information
is stored.

Table: Description of the number of jobs submitted and completed for each workload during the test.

Provider No. Jobs Completed/Submitted
Workload-1 Workload-2

A 84/86 63,68
B 76,77 75/79
C 84/84 70/71

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 25/ 57

Table of Contents

2: An Autonomous Blockchain-Based Workflow Execution Broker for e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 26/ 57

Motivation

» Usage:

P> Workflows are widely used by scientific computing communities.
» Need:

» Researchers and academicians require a workflow execution service.
» Motivation:

P> The demand for a workflow execution service was the primary motivation for integrating it into the
eBlocBroker infrastructure.

> Novelty:

> While distributed workflow execution exists, our work is unique.
» It is the first to offer a blockchain-based workflow execution service.
» No other known works provide a similar blockchain-based solution.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 27/ 57

Task-Scheduling Algorithms Used

» Used Heterogeneous Earliest Finish Time (HEFT) Algorithm Topcuoglu et al. [4].

» Task Prioritizing Phase: Set the priorities of the tasks and select the tasks based on their priorities.
» Processor Selection Phase: Map and schedule each selected task onto a processor.

» Used Topological generations layering (TGL) [5] scheduling by NetworkX [6].

» Many scheduling heuristics, such as HEFT, MinMin [7], Max-Min, and MCT [8], attempt to
solve the workflow mapping problem.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 28/ 57

Our Approach ——
. Original E}
» Our approach consists of three phases: Workflow

Execution

Execution

Scheduler

» inputting a workflow
> partitioning it for scheduling
P submission to computational providers for execution

Execution

» HEFT and TGL algorithms require that an application’s characteristics are known a priori,
including:
» Run times
» Data sizes for communication between jobs
> Job dependencies
» The partitioner takes the original workflow as input, which includes:

» Information about the estimated time of each job
» The DAG of the workflow
P> The calculated cost of each job

» The partitioner then produces various sub-workflows utilizing a given scheduler (e.g., HEFT or
TGL) and executes them based on their dependencies on each other.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 29/ 57

Our Approach

Workflow specification
and initial inputs

Submission

contract
eBloc
Broker

Bloxberg

Figure: Overview of our distributed architecture and the interactions between the user and providers.
Source code and data files are transferred between providers and users through IPFS.

Alper Alimoglu

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

30/ 57

Directed Acyclic Graph (DAG)

> A workflow is represented by a DAG, G = (V,E):

> V is the set of v jobs.
> E is the set of e edges between the jobs.

» Each edge (i,m) € E defines the precedence constraint:

> Job j; must complete its execution before job j, starts.

P data; , is the quantity of data that needs to be
transferred from job j; to job jn.

NetworkX, a Python package, is employed to conduct
graph analysis and create a workflow of jobs with
dependencies between them.

Figure: A randomly generated DAG
workflow that has 16 nodes and 28 edges.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 31/ 57

Layer Explanation

» Characteristics of topologically
generated sets of nodes:

» Ancestors of any node are included
in the previous layer.

» Descendants of a node are part of
the following layer.

> Nodes are assigned to the earliest
layer level they can be a part of.

Figure: Example view of topological generations layering on
randomly generated DAGs.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 32/ 57

;

Revised Cost Model for Workflow L

The total cost is composed of computation costs which involve running multiple workflow partitions on various
providers.

— .. X; . FePu
Cwp=) U X-Fy (3)
Symbol Meaning JEW;
J Set of jobs: J= {j1,/o,..- ’j\J\}
W Set of workflows: W = {1, a2, ..., } . cost «+ 0

Wi Set of jobs in a workflow: W; € J : for each job in workflow job set (j € W;) do

Dw, Set_ of _data files. on which workflow W; uses cost « cost + I X; - ,_—;pu
during its execution: D; = {d17d2""7d\DW,.\} end for
SDW. Size of the output files as patches in MB gener- cost - cost +8p, - Fpens

ated by the workflow W; on each Dyy, required

: for each data in data set (d € Dy.) do
to be uploaded !

: end for

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 33/ 57

Workflow Engine Algorithms

Our scheduler coordinates scheduling from the user side rather than the provider side.

(READY]—>[SUBMITTED]—>[RUNNING]
N a

[FAILED] [COMPLETED}

Figure: State changes of a job.

. Generate a list of layers of jobs to submit to each provider set (px € P) using the TGL algorithm.
: for each generated list in each layer that will be submitted to each provider py in the provider-set (px € P) do
while layer’s all jobs’ dependent jobs are incomplete do
Update the status of all the ongoing jobs.
end while
Partition workload sub-workflow @; into number of available providers in P and submit them to its corre-
sponding provider py.
7: end for

AR o

Figure: The workflow engine algorithm to distribute jobs using the topological generations [5]
algorithm

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 34/ 57

Workflow Engine Algorithms

1: Generate a list of jobs to submit to each provider set (px € P) using the HEFT algorithm.
2: Compute a sub-workflow @;, traversing graph starting from the sink node till there is no dependency from jobs
in other providers.

3: Submit sub-workflow ®; to its corresponding provider py.

4: while there are incomplete jobs in J do

b: Update the status of all the ongoing jobs

6: if there is a newly completed job in the list then

7: for each generated list of remaining jobs to submit to each provider py in the provider-set (px € P) do
8: Traverse graph starting list of incomplete jobs till there is no dependency from jobs in other providers.
9: Compute sub-workflow ®; to submit

10: Submit sub-workflow batch w; to its corresponding provider py.

11: end for
12: end if
13: end while

Figure: The workflow engine algorithm to distribute jobs using the HEFT [4, 9] algorithm

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 34/ 57

Experimental Results of the HEFT and TGL algorithms

For each individual case, tests are repeated three times, and the mean value is used for
evaluation.

Our random graph generator uses the following input parameters to construct DAGs:
» Each edge's weight is chosen uniformly randomly within the range of 15 to 1000.

» Every job's run-time is uniformly randomly determined between 2 and 5 minutes.

There are no disconnected nodes, meaning every node has a connection to one or more other
nodes. For this purpose, the edge count is 1.75 times the node count.

Table: Description of prices on provider p.

provider F. F;T ordge F;“he Fpens
(Cent) (Cent) (Cent) (Cent)
p1 0.0110 0.000099 0.000099 0.000099
P2 0.0100 0.000100 0.000100 0.000100
P3 0.0099 0.000120 0.000120 0.000120

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 35/ 57

Experimental Results of the HEFT and TGL algorithms

We submit workflows in the simulated real environment using HEFT and TGL scheduling

algorithms.
Test Workflow Method Completion Gas Used for Gas Used for Actual/Complete ailed
V| |E| Time (min) submitJob (gas) processPayment (gas) Cost (Cent)

7. 16 28 27 1722983 1942770 0.827,/0.827 0
T, 32 56 44 3738070 3986219 2.037/2.037 0
T3 64 112 HEFT 52 6745934 8037017 3.234/3.234 0
T, 128 224 100 13858812 16524333 6.867/7.025 2
Ts 256 448 191.5 27859947 33574732 13.909/14.060 3
Te 16 28 48.5 3533072 1932928 1.768/1.768 0
T 32 56 64 5709622 3965208 3.169/3.169 0
Ts 64 112 TGL 96 10192826 8017429 5.410/5.410 0
To 128 224 222 21100398 15922550 12.243/12.243 0
Tio 256 448 266 29775297 32933948 19.511/19.528 1

Alper Alimoglu

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

36/ 57

Experimental Results of the HEFT and TGL algorithms

During these tests if the sub-workflow's provider to be submitted has no idle core, it will be
redirected to another provider with no load in order to get a fast response.

» Every provider has a Flask web server that will provide information on the state of Slurm nodes
and partitions, such as available cores.

Table: Results of the HEFT and TGL algorithms taking provider loads into account.

Test Workflow Method Completion Gas Used for Gas Used for Actual/Complete

V| |E| Time (min) submitJob (gas) processPayment (gas) Cost (Cent) Failed
Ty 128 224 HEFT 102 13591822 16278401 6.972/7.009 1
T2 128 224 HEFT 111 13072131 16125526 6.961/7.025 1
T3 32 56 TGL 59.5 5777102 4089870 3.167/3.167 0
Tis 32 56 TGL 58.3 5762126 4082402 3.170/3.170 0

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 37/ 57

Discussion

> TGL Algorithm

> More aggressively distributes jobs to each provider

> Equally splits job sets to providers

> Results in additional data transfer costs

> Multiple layers may contain a single job that slows down workflow completion

» HEFT Algorithm
> Distributes jobs to minimize data transfer costs
» Conclusion

> Completion time takes longer for TGL than HEFT for all given node values.
> TGL is not an efficient algorithm for workflow partitioning due to higher data transfer costs.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 38/ 57

Table of Contents

3: Design of a Smart Contract Based Autonomous Organization for Sustainable Software and
e-Science

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 39/ 57

Problem

Can we develop an unstoppable virtual organization that will:
» Represent a open-source software

» Keep execution records of software by computing service providers, and provide transactional
data for analysis and reproducibility checks

» Continue to exist even after the related projects have ended

» Offer developers decision-making, crowdfunding, and citation mechanisms

Establishing a company and selling the software requires a lot of capital and bureaucratic
work. A virtual organization that runs as smart contract can be reasonable alternative to this.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 40/ 57

Proposal
Smart contract solutions for enhancing software sustainability and execution traceability:

» Development and Community: Funding mechanism and decision-making process based on voting
as an unstoppable virtual software organization for the software community.

» Professionalization: Efforts of developers are better assessed quantitatively using the blockchain
data.

» Credit: Blockchain based credit and citation ecosystem. Citations by paper authors and software
usages by other software.

» Software publishing: Help software discoverability and reuse.

» Software reproducibility: Conferences, journals and funding agencies can require software
execution records to be stored on the blockchain. Hashes of inputs and outputs can be recorded
on the blockchain.

» The importance of software reproducibility is increasing with Al advancements. In April 2021, the
European Commission proposed an EU regulatory structure on Al.

» The draft Al act [10] is the first attempt to enact horizontal Al regulations.

» The data files utilized for training an Al model and the generated data hold significant importance.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 41/ 57

Previous Work

» Crowdsourced development has become increasingly significant in building successful platforms
like OpenStreetMap, Instagram, Weather Underground, and Kickstarter.

» Companies can now gather funding from the crowd using smart contracts on the Ethereum
blockchain, known as Initial Coin Offerings (ICOs), instead of the traditional Initial Public
Offerings (IPOs).

» The first Distributed Autonomous Organization on the Ethereum platform called The DAO was
implemented in Spring 2016.

» Drips [11], an application developed on the Ethereum platform, enables flexible support of
open-source projects in GitHub by sending funds with built-in dependency splitting.

» There has been an approach [12] in order to ensure scientific reproducibility and data integrity of
workflow executions by storing the hash of input and output data files in a MongoDB database.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 42/ 57

Autonomous Software Organization

A smart contract running continuously on a blockchain can be the autonomous entity that
represents the software infrastructure. AutonomousSoftwareOrg presents a unstoppable,
uninterruptible, smart contract. AutonomousSoftwareOrg smart contract provides:

» a funding mechanism based on crypto-currencies
» a democratic mechanism for decision making mechanism based on voting

» record keeping for software usage citations and executions

- Software
Computational Developer
Service

Provider

Funding Agency T
SoftwareOrg

"[Researcher]—’[SOftware]

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 43/ 57

Blockchain-based autonomous organization model
Ethereum P2P Blockchain Network

- addSoftwareExecRecord
- setSoftwareNameVersion
- delSoftwareExecRecord

- VoteMemberCandidate

- AutonomougSoftwareOrg /| cite - DelVoteMemberCandidate
- BecomeMemberCandidate - Donate - Proposeproposa|
- UsedBySoftware - VoteForProposal
- WithdrawProposalFund

Software Computational
Dz?/m:l:'s Users Organization Service
Members Provider

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 44/ 57

AND/OR graph model for data and software execution trace

eBlocBroker infrastructure records the hash of each submitted source code and data files,
along with their generated output’s hashes into the eBlocBroker smart contract.
Figure illustrates a general AND/OR graph of software executions, where datasets are used

among various software.
@
w softwarel '—'

softwarel

H software2 ‘ softwarc3 ‘

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 45/ 57

The AutonomousSoftwareOrg Smart Contract Implementation

For testing purposes we copied and modified the Bloxberg ResearchCertificate smart
contract [13], and added new functions.

contract ResearchCertificate is ERC721 {
. // Variable definitions
function createCertificate(address recipient, bytes32 dataHash) public returns (uint256)
function getTokenIndex(bytes32 dataHash) public view returns(uint256)
function getDataHash(uint256 index) public view returns(bytes32)
function getDataHashLen() public view returns(uint256)

contract AutonomousSoftwareOrg {

. // Variable definitions
. // Conditional modifier definitions
. // Event definitions

function constructor(string memory name, uint8 m, uint8 n, string memory url, address _eBlocBrokerAddress, address
_ResearchCertificateAddress)

function ProposeProposal(string memory title, string memory url, bytes32 propHash, uint requestedFund, uint deadline) public
member (msg.sender) validDeadline(deadline)

function VoteForProposal(uint propNo) public validProposalNo(propNo) withinDeadline(propNo) member (msg.sender)
notVotedForProposal (propNo)

function WithdrawProposalFund(uint propNo) public validProposalNo(propNo) withinDeadline(propNo) member (msg.sender)
enoughFundBalance (propNo) proposalOwner (propNo) proposalMajority(propNo)

function BecomeMemberCandidate(string memory url) public notMember (msg.sender)

function VoteMemberCandidate(uint memberNo) public validMemberNo(memberNo) member (msg.sender) notVotedForMember (memberNo)

function DelVoteMemberCandidate(uint memberNo) public validMemberNo(memberNo) member (msg.sender) votedForMember (memberNo)

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

46/ 57

The AutonomousSoftwareOrg Smart Contract Implementation

function Donate() payable public nonZeroPaymentMade

function Cite(bytes32 doiNumber) public

function UsedBySoftware(address addr) public

function setNextSoftwareExecutionRecordCounter(bytes32 sourceCodeHash) public member (msg.sender) validEblocBrokerProvider ()
returns (uint32)

function addSoftwareExecRecord(bytes32 sourceCodeHash, uint32 index, bytes32[] memory inputHash, bytes32[] memory outputHash)
member (msg.sender) validEblocBrokerProvider() returns (uint32)

function delSoftwareExecRecord(bytes32 sourceCodeHash, uint32 index) member(msg.sender) public member(msg.sender)
softwareOwnerCheck (index)

function setSoftwareNameVersion(bytes32 sourceCodeHash, string memory name, string memory version) public member (msg.sender)
validEblocBrokerProvider ()

function getSoftwareExecutionCounter() public view returns(uint32)

function getAutonomousSoftwareOrgInfo() public returns (string memory, uint, uint, uint, uint)

function getMemberInfolength() public view returns (uint)

function getMemberInfo(uint memberNo) member (membersInfo[memberNo-1].memberAddr) public view returns (string memory, address,
uint)

function getCandidateMemberInfo(uint memberNo) notMember (membersInfo[memberNo-1].memberAddr) public view returns (string memory,
address, uint)

function getProposalsLength() public view returns (uint)

function getProposal(uint propNo) public view returns (string memory, string memory, uint256, uint, uint, bool, uint)

function getDonationInfo(uint donationNo) public view returns (address, uint, uint)

function getCitation(uint citeno) public view returns (bytes32)

function getUsedBySoftware(uint usedBySoftwareNo) public view returns (address)

function getNoOfIncomingDataArcs(bytes32 sourceCodeHash, uint32 index) public view returns(uint)

function getNoOfOutgoingDataArcs(bytes32 sourceCodeHash, uint32 index) public view returns(uint)

function getIncomingData(bytesSZ sourceCodeHash, uint32 index, uint i) public view returns(uint)

function getOutgoingData(bytes32 sourceCodeHash, uint32 index, uint i) public view returns(uint)

// the remaining getter functions

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 47/ 57

The addSoftwareExecRecord() Function

function addSoftwareExecRecord(bytes32 sourceCodeHash, uint32 index, bytes32[] memory inputHash, bytes32[] memory outputHash)
public member (msg.sender) validEblocBrokerProvider() returns (uint32) {
if (index == 0) {
globalIndexCounter += 1;
softwareExecutionRecordOwner.push(msg.sender) ;
index = globallIndexCounter;

¥
else {
require(softwareExecutionRecordOwner [index] == msg.sender);

softwareExecutionNumber += 1;

ResearchCertificate(ResearchCertificateAddress).createCertificate(msg.sender, sourceCodeHash);

for (uint256 i = 0; i < inputHash.length; i++) {
uint256 tokenIndex = ResearchCertificate(ResearchCertificateAddress).createCertificate(msg.sender, inputHash[il);
incoming[sourceCodeHash] [index] . push(tokenIndex) ;

incomingLen [sourceCodeHash] [index] = incomingLen[sourceCodeHash] [index] + inputHash.length;
for (uint256 i = 0; i < outputHash.length; i++) {

uint256 tokenIndex = ResearchCertificate(ResearchCertificateAddress).createCertificate(msg.sender, outputHash[i]);
outgoing[sourceCodeHash] [index] . push(tokenIndex) ;

outgoingLen[sourceCodeHash] [index] = outgoingLen[sourceCodeHash] [index] + outputHash.length;
emit LogSoftwareExecRecord(msg.sender, sourceCodeHash, index, inputHash, outputHash);
return index;

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

48/ 57

Security Model

» Withdraw Funds for each Proposal: The WithdrawProposalFund() function follows the
Checks-Effects-Interactions pattern, where the recipient is responsible for claiming their funds by
initiating a withdrawal transaction.

function WithdrawProposalFund(uint propNo) public proposalOwner (propNo) proposalMajority(propNo)
validProposalNo(propNo) withinDeadline(propNo) member(msg.sender) enough_fund_balance(propNo) {
uint fund = proposals[propNo].requestedFund;
weiBalance -= fund;
proposals [propNo] .requestedFund = 0;
(bool success,) = msg.sender.call{value: fund}("");
require(success, "Transfer failed.");
emit LogWithdrawProposalFund(propNo, fund, block.number, msg.sender);

OCONOUTHWN =

» Oracle Manipulation: Protocols sometimes need additional information from outside the
blockchain to function properly. This off-chain information is supplied by oracles which in our
case are computational providers.

» Unbounded Loops Vulnerability: Unbounded loops in Solidity can lead to denial-of-service
attacks and run out of gas issues. For that reason, we have only used loops with defined endpoint

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 49/ 57

Example of a general AND/OR graph of software executions

The hash of the data file and software with a specific version is stored in the same way as the
unique token ID; hence, the software’s token ID is followed by the execution index after the
dot.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 50/ 57

Analysis Algorithms

Graph of Software Execution Analysis Algorithms.

Algorithm Description

PageRankSE Pagerank on software version execution graph

PageRankSV Pagerank on software version graph

PageRankS Pagerank on software graph

DAGify Construct a DAG that shows which software initially generated
the data files

KnockedDown Graph formed by deleting a single file node and all the nodes

that transitively depend on it

MaxKnockedDown Qutput nodes that produces the maximum number of the
knocked down nodes

SWExecMinlnput Software execution that required data files of minimum total size

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 51/ 57

Merging same software

DAGify

Construct a DAG that shows which software initially generated the data files.

Alper Alimoglu

Exec sn’® Files
Order created

—

10.1 12

17.2 26, 27
73 9,11

74 13

7.5 36, 37
146 15,16
47 5,6

4.8 none

79 8,20

10 14.10 28, 29, 30

©O© 00 NO OB WNN

Exec
Order

v,e
Sn

Files
created

(a)

11
12
13
14
15
16
17
18
19
20

17.11
17.12
19.13
17.14
22.15
7.16
17.17
22.18
22.19
22.20

18, 38
none

21

39

42, 43
31, 32, 33
34, 35
23, 24, 25
40

41

(b)

EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 53/ 57

MaxKnockedDown

Output nodes that produces the maximum number of the knocked down nodes.
As an example, in the main graph, if data node 11 is knocked down, then it directly affects
the creation of 36 nodes.

4.7

7.9

4.8

7.4

5 &

17.2

LY

4’@\
ROSEISOW

17.14

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 54/ 57

SWExecMinlnput

Here, if a data file is generated by multiple software programs, we determine which software requires the
minimum total size of input data files.

In order to generate node 42, we can take three different approaches where 22.19, 22.20, or
22.15 could generate it. Software execution 22.15 requires data files of minimum total size.

Figure: Software executions to generate node 42. The size of each data node is indicated next to it.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 55/ 57

Table of Contents

Discussion and Future Roadmap

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 56/ 57

Discussion and Future Roadmap

» Development of an ERC20 token on a separate smart contract.

» Deployment of eBlocBroker smart contract on the Polygon main networks after making stress
testing on Bloxberg.

» A system for feedback reviews could be implemented for computation providers, just like the one
used by Airbnb for home owners. To ensure optimal outcomes, a reputation system can also be
established for requesters that leave reviews and ratings for providers, thus, allowing them to
choose the most trustable providers for the job.

» The RISC Zero [14] tool may be used for verifiable computation using zero-knowledge proof. It
can prove the computation of source codes implemented in Rust, and generated proofs could be
verified.

» Larger clusters will be used for testing workflow submissions.

» An accessible web interface will be created using Web3.js.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 57/ 57

Publications

» Alimoglu, A. and C. ézturan, “An autonomous blockchain-based computational broker for
e-science”, Concurrency and Computation: Practice and Experience, Vol. 36, No. 13, p. 8087,
2024.

» Alimoglu, A. and C. Ozturan, “An autonomous blockchain-based workflow execution broker for
e-science”, Cluster Computing, May 2024.

» Alimoglu, A. and C. Ozturan, “Design of a Smart Contract Based Autonomous Organization for
Sustainable Software”, 13th IEEE International Conference on e-Science, e-Science 2017,
Auckland, New Zealand, October 24-27, 2017, pp. 471476, IEEE Computer Society, 2017.

» An extended journal version has been submitted and will be revised and resubmitted in the future.
» Our implementations are available online as open source with permissive licenses;

> https://github.com/ebloc/AutonomousSoftwarelrg.
> https://github.com/ebloc/ebloc-broker

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 57/ 57

https://github.com/ebloc/AutonomousSoftwareOrg
https://github.com/ebloc/ebloc-broker

Questions?

Any Questions?
THANK YOU

2

All animated images in this presentation are generated by DALL-E.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science

57/ 57

REFERENCES

(1]
[2]

3]

[4]

5]

(6]
[7]

(8]

9]
[10]

[11]
[12]

G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1-32, 2014.

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, S. Weeratunga, and H. Simon, “The nas parallel benchmarks,” 1991.

G. Kara and C. Ozturan, “Algorithm 1002: Graph coloring based parallel push-relabel algorithm for the maximum flow problem,” ACM Transactions on
Mathematical Software (TOMS), vol. 45, no. 4, pp. 1-28, 2019.

H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and low-complexity task scheduling for heterogeneous computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274, Mar. 2002.

“Topological generations,” accessed on May 4, 2024. [Online]. Available:
https://networkx.org /documentation /stable/reference/algorithms/generated /networkx.algorithms.dag.topological generations.html

“Networkx,” accessed on May 4, 2024. [Online]. Available: https://networkx.org

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, “Task scheduling strategies for workflow-based applications in grids,” in
CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005. Cardiff, Wales, UK: IEEE, 2005, pp. 759-767 Vol. 2.

T. D. Braun, H. J. Siegel, N. Beck, L. L. B&l6ni, M. Maheswaran, A. |. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A
Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems,” Journal of
Parallel and Distributed Computing, vol. 61, no. 6, pp. 810-837, Jun. 2001.

M. Rocklin, D. Nikel-Shepherd, and C. Rodrigues, “Heterogeneous earliest finish time,” accessed on May 4, 2024. [Online]. Available:
https://github.com /mrocklin/heft

“Artificial intelligence act,” accessed on May 4, 2024. [Online]. Available:
https://www.europarl.europa.eu/RegData/etudes/BRIE /2021/698792/EPRS_BRI(2021)698792_EN.pdf

“Drips,” accessed on May 4, 2024. [Online]. Available: https://docs.drips.network

R. Hasan, S. Purawat, C. Olschanowsky, and I. Altintas, “Preserving file provenance using principles of blockchain to ensure scientific reproducibility,” in
2023 IEEE 19th International Conference on e-Science (e-Science), 2023, pp. 1-7.

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 57/ 57

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.dag.topological_generations.html
https://networkx.org
https://github.com/mrocklin/heft
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf
https://docs.drips.network

REFERENCES

[13] “Bloxberg researchcertificate,” Mar. 2024. [Online]. Available:
https:/ /blockexplorer.bloxberg.org/address/0x3fb704dfDB72Fc06860D9F09124C30919488f13C/contracts#address-tabs

[14] “The general purpose zero-knowledge vm,” accessed on May 4, 2024. [Online]. Available: https://www.risczero.com

Alper Alimoglu EBlockBroker: An Autonomous Blockchain-based Computational Broker For e-Science 57/ 57

https://blockexplorer.bloxberg.org/address/0x3fb704dfDB72Fc06860D9F09124C30919488f13C/contracts#address-tabs
https://www.risczero.com

	Motivation
	1: EBlocBroker: An Autonomous Blockchain-base Computational Broker For e-Science
	2: An Autonomous Blockchain-Based Workflow Execution Broker for e-Science
	3: Design of a Smart Contract Based Autonomous Organization for Sustainable Software and e-Science
	Discussion and Future Roadmap

